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“Hom pot dir que la diversificació del medi i la interacció de les espècies entre elles i

amb el medi, produeixen un cert ordre, lluny de la uniformització esperable en un model

que considerés els individus de les diferents espècies com si fossin molècules d’un gas.

La biosfera no és un sistema homogeni sinó que, cada punt, cada instant, té quelcom

de particular: la flor, la molsa, un clot d’aigua, un raconet de bosc -o una ciutat-.

La natura té una bomba d’entropia que l’aparta de la predicció d’uniformitat que pesa

sobre sistemes senzills i tancats, almenys segons les interpretacions termodinàmiques

corrents.”

Ramon Margalef

“One can say that the diversification of the environment and the interaction of species

among them and with the environment produce a certain order, far from the uniformity

expected in a model that considers individuals of different species like gas molecules.

The biosphere is not a homogeneous system but every spot, every moment has something

special: the flower, the moss, a water puddle, a den of the forest, or a city. Nature has

an entropy pump that chase away the prediction of uniformity weighing on simple and

closed systems, at least according to the usual thermodynamic interpretations.”

Ramon Margalef
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The multifractal structure of ecosystems: implications for the response of

forest fires to environmental conditions

by Gerard M Rocher Ros

Ecosystems are generally arranged in complex patterns, and often this is due to self-

organisation processes. The main characteristic of a self-organised system is that inter-

actions of the smaller components of the system produce emergent properties that are

only seen at a larger scale. Also, many self-organised systems present scale invariance,

that is, any part at any scale resembles the whole. This is characteristic of a fractal

object.

In this thesis, I study the landscape of ecosystems under a fire regime using multifractal

analysis. I show that those ecosystems are self-organised, displaying multifractal pat-

terns in the landscape, both when simulated with a model and in real data of boreal

forests.

Furthermore, I explore, for the first time, the relationship of multifractal patterns with

the external forcing that drives the system, showing that the multifractal structure that

constitutes the ecosystem makes it sensitive to the environment.

This has implications for the study of self-organising processes and also for ecological

studies, as it relates the structure of the system to the mechanisms that drive it.
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Chapter 1

Introduction and background

In this thesis, I explore the multifractal structure that lies beneath the ecosystems,

from the point of view of forests fires. I use a simple model that simulates forest fires

and ecological succession, and also empirical data from an area that is known to suffer

frequent fires.

In the following section I introduce the reader to the main concepts of self-organisation,

fractals and multifractals, and some necessary background of forest fire models, specially

the work developed by Pueyo [2007] which is the basis of this thesis.

1.1 Self-organisation, criticality and scale invariance

1.1.1 Self-organisation and criticality

Most of the systems that compose our universe are formed by a large number of entities,

with complex interactions and very often nonlinear dynamics. The classical approach

to study any system is to understand the composition, state and the evolution of the

system, or the parts that compose it. But due to the large number of particles and

interactions, those systems cannot be studied with classical physics, as it is almost im-

possible to know the states of each particle and predict its particular evolution in order

to calculate the interactions and obtain the general state of the system. The discipline

of statistical physics deals with this problem, using the large amount of particles of the

1
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system not as a problem but as a useful fact, because, in this situation, statistical tools

give accurate predictions and analyses of the system.

Furthermore, many of these systems, as it is clear in ecology, show many interactions

among different elements of the system, with emergent properties that are not possible

to identify at the individual level. Some dissipative systems, far from thermodynami-

cal equilibrium and with many degrees of freedom, show a variety of complex patterns,

reaching a state of self-organisation, and they self-regulate to remain in that state.

Bak et al. [1988] developed a new concept, Self-Organised Criticality (SOC) to describe

some of those systems, as there is a critical point where the system naturally self organ-

ises.

Precisely, the definition of self-organisation is that the interaction of the smaller com-

ponents of the systems produces emergent properties that are only appreciable at the

larger scale.

SOC have been claimed in a large number of fields, such as astrophysics, geophysics,

particle physics, ecology, biology, social systems... [Aschwanden, 2013], and in all these

kinds of systems it is possible to find similar patterns and behaviours. Therefore it is

a good starting point to find general rules in nature, although there is self-organisation

without criticality [Pueyo et al., 2010], and many other theories from complex systems

that can provide useful explanations to those processes.

1.1.2 Scale invariance, fractals and power laws

SOC systems have other interesting properties. When self-organised, they display scale

invariance. That is, the pattern found at a certain scale is similar as we zoom in or

either out; i. e. the system is scale free: there is not any characteristic scale to represent

the system.

This kind of structure was studied in detail by Mandelbrot [1982], naming it fractal.

Those patterns are striking structures, where any part resembles the whole. Fractal

shapes are found throughout the natural world, i. e. the coast of an island [Mandelbrot,

1967], river networks [Tarboton et al., 1988], trees, the blood vessel system, the lungs,

or the universe itself [Iovane et al., 2004].

Mandelbrot [1982] developed a set of mathematical tools to deal with those objects. The

main concept that emerges from his work is that those objects have a fractal dimension
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D, which can be a non-integer number, and is a measure of how the object fills the

space. For example, a tree with few branches, although self-similar and fractal, has a

lower D than another with a large number of branches that fill very well the space. Or

the coast of Brazil, smooth and with long beaches, has a lower D than the Norwegian

coast with endless fjords (figure 1.1). Note that D is always ≤ DE , where DE is the

Euclidean dimension of the object.

Figure 1.1: The nature is fractal: a satellite image of the largest Fjord in Norway,
the Sagnefjord. Several fractal objects are visible: the fjords, the mountain ranges, the

river networks; the distribution of islands, lakes, or glaciers.

The statistical distribution that is inherent to fractal and scale free objects is the power

law :

θ(s) ∝ as−β (1.1)

Where a is a constant, s is the size of the measure and θ(s) the frequency of this measure.

This distribution is characterized by a large amount of smaller size elements, and just a

few of very large ones. Thinking about a river network, there is just one river with the

largest width, but hundreds of streams with less than 100 cm.

The scale invariance of the power law is better seen when the measures are represented

by logarithms, as changing the scale is precisely increasing the logarithm of a measure.

Therefore, a power law representing certain measure of a fractal object in a log-log plot

appears as a straight line, and precisely the slope of this straight line, −β, where β is

the exponent of the power law which is related to the fractal dimension D.
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1.2 Forest fire models

In order to study self-organisation processes, Bak, Tang, and Wiesenfeld first introduced

the sandpile model, which naturally evolves to a critical state, without fine tuning of the

parameters of the model. This was the first model to reproduce SOC, but other models

for earthquakes [Olami et al., 1992], evolution of populations [Bak and Sneppen, 1993]

or cloud formation [Nagel and Raschke, 1992] also reproduce this behaviour.

Another example is the forest fire model in Drossel and Schwabl [1992], Henley [1993]. In

the next section the main characteristics and behaviour of this model will be explained.

There are, though, three characteristics of forest fire dynamics that indicate it can be a

self-organised critical system:

1. Is a multiplicative phenomenon (fire spreads).

2. Can have negative feedbacks (burnt areas preventing future fires in the long term).

3. Time scales are separated.

It can be true for large, undisturbed forests of certain areas, like boreal or temperate

forests. Although in other biomes it may not be the case, for example, the Amazonian

rain forests [Pueyo et al., 2010].

1.2.1 Henley, Drossell and Schwabl’s model

Drossel and Schwabl [1992] and Henley [1993] developed the “Forest Fire” (FF) model

which simulate self- organisation processes in a forest under the influence of forest fire.

It is a very simple model, inspired in the idea of forest fires, but does not pretend to

reproduce the behaviour of fires as it is too simple for that, and comprises some unreal-

istic properties that do not allow it to be used to model real fire dynamics. However, it

has very interesting properties related to self-organisation.

The model can be summarized as follows:

In a bidimensional lattice, each cell can be in one of three states: empty, with a tree,

or with a burning tree. In a time step, an empty cell can get a tree with a probability

γ � 1, and if there is a tree on the cell, can be hit by lightning and become a burning

tree with probability η � γ. Then, if there is a burning tree in a cell (i,j) at a time step,
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the fire spreads to each of the neighbouring cells if that have a non burning tree. In the

model, fire can spread to the four nearest neighbours (i-1,j), (i+1,j), (i,j-1), (i,j+1).

Also, at this time step where fire spreads to a neighbour cell, the cell (i,j) becomes

empty. The fire will stop when there are no neighbours with a tree where it can spread.

As long as there is a fire burning, there are neither lightning strikes nor tree growth in

the lattice. This property is important as it allows the model to separate the different

phenomena that happen at different time scales, that is, fire spreads at a time scale in

which tree growth is negligible.

This model captures two important properties of ecological processes:

• Ecological constructive processes are rather slow, while catastrophic events are fast

[Margalef, 1997].

• The two dimensions allow the arrangement of groups of trees, introducing spatial

correlations.

But on the other hand, there are several features that make the model too unrealistic

to really represent the ecological processes of forest fires.

• Trees do not appear randomly and with a unique size. There is a fuel succession

where biomass increases gradually.

• The fire spread does not depend only on the presence of a tree in a cell, but on the

properties of the vegetation, specially the type and amount of fuel, among others.

And specially it also depends on environmental conditions such as wind, moisture

and temperature.

In order to better recreate the fire dynamics and its statistical properties, Pueyo [2007]

developed a variant of the FF model, the Self-Organised Critical Fuel Succession model

(SOCFUS).
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1.2.2 The SOCFUS model

The SOCFUS model, developed by S. Pueyo, and fully studied and detailed in Pueyo

[2007], maintains the original simplicity of the FF model dynamics, but it captures some

essential properties of real forest fire ecological processes.

The most important improvement is that each cell of the lattice is no longer binary

(presence/absence of trees), but now the ecological succession is represented. A proba-

bility r of catching a fire is assigned at each cell, either from the ignition (lightning) or

from neighbouring cells when fire spreads. The value of r increases gradually over time

and decreases abruptly when the cell is burnt; this component captures the essential

part of fuel succession, as there is evidence that in boreal forests, fire risks increases

over time [Niklasson and Granström, 2000]. Interestingly, Pueyo [2007] states that there

were no clear differences between the behaviour of FF and SOCFUS model, indicating

that, as statistical physics suggests, SOC systems are universal and in this case both

models belong to the same “universality class”. But additionally, the SOCFUS model

can be used to study fuel succession in forest fire dynamics.

Another new rule added to the model is that the probability r of catching a fire is

composed of two parts:

r = ri + re (1.2)

• ri represents the internal component of the probability of burning of each cell (i.

e. the “amount” of fuel), increases gradually over time and if it is burnt becomes

0.

• re represents the external component of the probability of burning, and is indepen-

dent of the cell. It simulates the environmental component of forest fires, as real

world fires depend not only on the fuel but also on the meteorological conditions.

Equation 1.2 is constrained by r ∈ [0, 1], and ri ∈ [0, r∞], where r∞ is a predefined

threshold (in this case, r∞ = 0.7).

re follows a truncated exponential distribution, θ(re) ∝ eκre , with re ∈ [remin, r
e
max].

Is important to note that ri depends on each cell (i,j), but for a certain fire, re will be

fixed: the same “environment” for all cells while the fire spreads.

The sequence of the fire spread is the same as in the FF model, but now the spread of a

burning cell to a neighbour cell (i,j) depends on a probability rij = rije + riji instead of
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presence/absence of a tree. The sequence will end when there is not any cell with fire.

Then, all cells burned will have riji = 0, and all riji are increased by a certain amount

g (proportional to the time between each lightning, as we assume that ri increases at a

constant rate).

For more information about the implementation of the model and the details of the

algorithm, see Pueyo [2007].

1.2.3 Results of Pueyo’s [2007] work

The results obtained by Pueyo [2007], using the SOCFUS model and empirical data

from boreal forests in Alberta, Canada, are the motivation of this project. Here the

main findings will be explained in order to stablish the framework of this master thesis.

As explained in section 1.2.2 above, the SOCFUS model allows us to study fire dynamics

with fuel succession mechanisms included, which could play a central role in real world

fires. Also, the other important component is included: the environmental forcing. This

is not only useful to recreate more accurately the reality in the model, but also allows to

compare the modelled results with empirical data, and therefore understand the mecha-

nisms in real forest fires. We should not forget that a model is a simplification of reality

to be able to understand the real world.

As forest fires, at least in some areas, seem to display SOC behaviour (or more ac-

curately, Self Organised sub-Criticality, as the system self organises below the critical

point [Pueyo, 2007]), their sizes are well described by a power law distribution, eq. 1.1,

and specially by the slope of the power law represented in a log-log plot, β.

With the SOCFUS model, Pueyo [2007] found that different environmental conditions

re, are related with different fire size distributions, expressed as different power laws (a

of fig. 1.2). Furthermore, he compared the results with an empirical proxy to re, the Fire

Weather Index (FWI), which summarizes meteorological variables that are related with

fire risk, specially fuel moisture. Using the FWI together with empirical values of β, he

compared the results of the SOCFUS model with reality, showing a clear relationship

between both ( b and e of fig. 1.2).

An interesting finding is that, as re increases, that is, environmental conditions are more

favourable for fire, the slope β of the fire distribution decreases, meaning that large fires

are more probable ( b and c of fig. 1.2).
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A similar relationship is established with empirical data ( d, e and f of fig. 1.2).

Figure 1.2: Reproduction of figure 5 of Pueyo [2007], summarizing the main findings
of his work.

Salvador Pueyo stated two hypotheses that will be tested in this master thesis:

• The forest is self-organised, arranged in a multifractal structure.

• Environmental conditions, re, decompose the multifractal spectrum of the forest

in different scaling sets.
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1.3 Multifractals

In section 1.1.2 I briefly introduced the concept of fractals to describe the shapes that

surround us. Fractal structures are anywhere in the universe, and have been proven to

be very useful to describe systems. However, sometimes a scale-invariant object cannot

be defined by only one fractal dimension D, as it may be shaped by multiple, or infinite

fractal dimensions.

In his main book, Mandelbrot [1982] states that a single D may not be sufficient, but

the concept of multifractal was later developed and popularized in the research area of

turbulent behaviours. Already on 1941, Kolmogorov [1941] had the intuitive idea that

under fully developed turbulence, a case of a physical scale invariant system, energy

was transmitted from large scales to small ones by a variable that only depends on the

quotient of both scales. The physical variables then are associated to a fractal or mul-

tifractal structure beneath [Turiel et al., 2006].

Multifractal patterns can be found also in a wide variety of objects, ranging from time

series of rainfall [Dauphiné, 2013], heartbeat dynamics [Ivanov et al., 1999], or different

spatial patterns such as forest gaps in the rain forest [Solé and Manrubia, 1995] or in

mineral deposits distribution [Agterberg, 1995]. This latter case is a good example re-

lated with this work, and will be explained in more detail in the next section.
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1.3.1 Multifractals in space, the example of mineral distribution

Mandelbrot [1989] states the importance of the multifractal formalism in geophysics, as

many geochemical or geological properties are multifractally distributed, he suggests. A

simple example to realize this is the case of copper [Mandelbrot, 1989], quoting his own

words:

”High-grade copper is of course distributed nonuniformly: it concentrates in

few regions of the world. If one examines such region in detail, however,

copper continues to be found nonuniform: it concentrates in few sub-regions.

And so on. It is reasonable, therefore, to suppose that the relative distribution

of high-grade copper is the same (in the statistical sense) within each copper-

bearing region, whether is small or large.[. . . ] Next, examine lower grade

copper. The fact that is more widespread in nature is expressed by its being

supported by a fractal set of higher fractal dimension. Overall, in order to

give a full representation of copper it is seen that fractals are necessary and

no single fractal set is sufficient.”

Figure 1.3: Image of the landscape emerged from SOCFUS model, showing different
values of ri, the amount of fuel in each cell. Lattice size of 2048x2048.
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It is clear then that some objects require more than a fractal set, and the group of those

fractal dimensions is defined as a multifractal measure. The mathematical and statistical

aspects of multifractals will be explained in section 2.1.

The SOCFUS model originates a complex landscape, a ”patchy-like” structure (fig 1.3),

where different amounts of fuel (not exactly fuel, but probability of catching fire de-

pendent on the fuel), ri, are represented. This structure is expected to be multifractal.

This is easy to understand if we think of the fuel distribution on the landscape as the

example of copper distribution from Mandelbrot [1989]. Considering a certain measure

of ri, will be distributed according to a particular fractal dimension, and maybe another

measure of ri will be more common on the landscape, e. g. a higher fractal dimension.

Considering that ri is continuous in ∈ [0, r∞], to describe the spatial distribution of ri an

infinite number of fractal dimensions could be required. Hence, it might be multifractal.
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2.1 Multifractal spectrum

In order to study the hierarchical structure of the landscape, consider a square matrix of

size L, where each cell has a ri,ji assigned (a certain amount of the internal component

of the probability of burning for a (i,j) cell). In those simulations, L = 2048.

Now, to normalize the matrix we define a new measure,

µi,j =
ri,ji
Tri

(2.1)

Where Tri =
L∑
i=0

L∑
j=0

ri,ji is the sum of all values, in order that
L∑
i=0

L∑
j=0

µi,j = 1.

Let us cover the map with boxes of size ε, with varying sizes of ε in order to have

different scales. For simplicity, ε can take values as 2n, where 0 ≤ n ≤ 11, so ε can be

1, 2, 4, 8, 16. . . 512, 1024, 2048.

Let the measure µm,n(ε) be the total measure of µi,j in a box of size ε,

µm,n(ε) =
ε∑
i=0

ε∑
j=0

µi,j

As µi,j will be distributed non-uniformly on the space at all scales, µm,n(ε) will follow a

power law with ε in the limit of box size ε→ 0,

µm,n(ε) ∝ εαm,n (2.2)

12
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where αm,n is called the Hölder exponent [Mandelbrot, 1989], or strength of singularity

[Frisch and Parisi, 1985].

Then, different boxes µm,n of size ε have different values of the Hölder exponent αm,n.

Let us define the number of boxes with a specific α value as nα(ε). If nα(ε) follows a

power law with scale ε,

nα(ε) ∝ ε−f(α) (2.3)

It is clear that the boxes with the same Hölder exponent α form a particular fractal set.

The exponent f(α) can be thought as the Hausdorff fractal dimension of α, but this

is not entirely accurate, as it is possible to have negative values, while negative fractal

dimensions are not realistic [Mandelbrot, 1989].

f(α) may not only be seen as a mathematical function but from a probabilistic point of

view, as

f(α) = DE + Ψ(α) (2.4)

[Mandelbrot, 1989], where DE is the Euclidean dimension of the object and

Ψ(α) =
log(p(α))

log(L/ε)
(2.5)

which is simply an expression of the probability of α.

More details about f(α) can be found in Mandelbrot [1989] and also Halsey et al. [1986],

and will be better explained in section 2.1.2, but in most of the cases, and for a better

interpretation, f(α) can be treated as the fractal dimension of a measure α, and the

relationship of α and f(α) is defined as the multifractal spectrum.

Different methods to estimate the multifractal spectrum have been developed. The

method of moments was introduced by Halsey et al. [1986], and other methods in order

to deal with natural images have also been developed. More information of different

methods are detailed in Turiel et al. [2006]. While other methods provide more ac-

curate estimates of the multifractal spectrum, the method of moments is particularly

helpful to investigate if the system is scale invariant, and in which range of scales shows

multifractality.
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2.1.1 The method of moments

To be able to calculate the multifractal spectrum I used the method of moments.

A mass-partition function of the moment of order q is defined as

χq(ε) =
∑
N(ε)

µqm,n(ε) (2.6)

The sum is done for all boxes of size ε, with −∞ < q < +∞. It is interesting to note

that for q = 0, we are simply calculating the fractal dimension, D.

For q = 1 is the Shannon entropy:

S = −
∑
N(ε)

µm,n log(µm,n) (2.7)

And for q = 2 is in fact related to the variance and to the correlation dimension [Solé

and Manrubia, 1995]:

Cd =

log

∑
N(ε)

µ2m,n


log(ε)

(2.8)

Then, for large, positive values of q the sum is determined mainly by large values of

µ, while for large, negative values of q the sum is decided by few small values of µ.

Therefore, this method allows for different values of q to reflect different values of the

measure µ.

Then, if the distribution of the measure µ is scale invariant, the relationship between

χq(ε) and different scales ε follows a power law for any value of q:

χq(ε) ∝ ετ(q) (2.9)

The exponent τ(q) can be evaluated as the slope of χq(ε) versus ε in a log-log plot. I

calculated the slope using a least squares regression. It is important to be careful in this

step, since the distribution of µ may not be scale invariant for all the scales, at certain

values of ε the relationship of log(χq(ε)) versus log(ε) may not be linear. Therefore, τ(q)

can only be evaluated where the distribution of µ is scale free, as long as this is true

for a certain range of scales ε [Scheuring and Riedi, 1994]. In this case, I observed that
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scale invariance for the lower values of µ is not present for small sizes of ε (figure 3.1),

hence, the minimum value used for the regression was a size ε = 16.

Then, it is possible to obtain the Hölder exponent α and the multifractal spectrum f(α)

by a Legendre transform [Mandelbrot, 1989]:

α(q) =
∂τ(q)

∂(q)
and f(α(q)) = α(q)q − τ(q) (2.10)

Also, is important to check in which range the moments are defined [Arenas and Chorin,

2006].

The moments of order q for any function are defined as:

〈Xq〉 =

∫
xqf(x)dx

High-order moments are not defined when the tails display a power law. If the lower

tail follows a power law (f(µ) = aµβ), its contribution to the q-moment will be:

〈Xq〉 =

∫ µm

0
µqf(µ)dµ =

∫ µm

0
µqaµβdµ =

a

∫ µm

0
µqµβ =

a

q + β + 1

[
µq+β+1

]µm
0

(2.11)

where β in this case is the slope of the histogram of all values of µ, in logarithmic scale.

This will only take finite values for q > −β − 1, so in the other case, the moments will

be undefined (〈Xq〉 → ∞).

2.1.2 The cumulative probabilities method

Also, we tried to approximate the multifractal spectrum directly from the definition

given by Mandelbrot [1989], which is the non cumulative distribution of α.

From equation 2.2 we can directly calculate the Hölder exponents:

α =
− log(µmn)

log(L/ε)
(2.12)
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Mandelbrot [1989] states that at the limit ε→ 0 the noncumulative probability (which

enters the expression for Ψ(α) in the equation 2.5), and the cumulative distribution

function of α converge. This limit is meaningful for mathematical fractal objects, but

not for empirical or even simulated data. This is the reason why to calculate f(α),

Mandelbrot introduces a correction term to the cumulative version of equation 2.4:

f(αi) =
log(Nαi)

log(L/ε)
+

log(2)

log(L/ε)
(2.13)

Where Nαi is the accumulated amount of αi, which will vary according:

Nαi =



αi∑
0

n(αi) if αi ≤ DE .

αmax∑
αi

n(αi) if αi > DE .

Where n(αi) is the amount of a certain α. That is, the amount of α smaller of than αi

while α is below DE , in this case DE = 2, and vice versa.

2.2 Temporal evolution of the model

In order to study the temporal evolution of the model, I calculated several variables

over time. The time steps are not constant, they correspond tho the intervals between

two fire events. Hence, “time” is not linear in this series, among other reasons because

lightning strikes have a random component.

The lattice started with all values riji = 0. And there were a total of 47 942 fires

simulated, therefore the calculations where done on 23 972 occasions.

I calculated:

1. The Shannon entropy, S, (detailed above: equation 2.7)

2. The correlation dimension, Cd, (equation 2.8).

3. Cheng [1994] proposed that the multifractal spectrum, as it is a convex function,

can be summarized as τ ′′(1), which can be approximated as:

τ ′′(1) ≈ τ(2)− 2τ(1) + τ(0) (2.14)
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I used this index as a simple measure of the convexity of the multifractal spectrum

in the time evolution only. More information about τ ′′(1) can be found in Cheng

[1999].

4. And also the burnt area since the last fire, BA.

2.3 The empirical data

In order to test the results obtained with the model I used real landscape data. The

area studied is the boreal forests of central Alaska, for some reasons:

• The boreal regions are among the few that still preserve a natural, undisturbed

state, with a (relatively) little intervention by humans, and therefore it is more

likely that the natural dynamics of the ecosystems are more intact than in other

ecorregions [Foley et al., 2005].

• The boreal forests are also subject to a fire regime that seems to have an endoge-

nous component [Niklasson and Granström, 2000]. The area selected for the study

had an important amount of fires, which can be appreciated in figure 2.1.

• The study developed by Pueyo [2007] was done in boreal forests, in the Canadian

province of Alberta.

• The best data publicly available (to my knowledge) is developed by the United

States Geological Survey (USGS) for their territory.

As ri is a theoretical concept, I needed to use a similar variable which could be found

in the available data.

Many forest fire models used to accurately predict the behaviour of a certain fire, such

as the popular model FARSITE, are based on the mathematical model developed by

Rothermel [1972], which summarizes different aspects of the landscape as a spread rate

rs. This rs is a measure of how fast the fire spreads to a neighbour area, and can be

interpreted as the vulnerability of the neighbouring area to catch fire, either from an

existing fire or from the first spark that lights up the fire.

We could also expect that if lightning strikes on areas with low rs, there are few chances

that it ignites a fire. And an existing fire is less likely to spread further in this area.
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Therefore this rate of spread rs can be interpreted as a proxy for the probability of fire

propagation of the SOCFUS model, r. As we will see in section 2.3.1, where the model

Rothermel [1972] is detailed, this rs has also some external components (wind, moisture)

and internal (fuel type, slope) which are also common features with the SOCFUS model,

making it feasible a better comparison of this theoretical model with the reality.

2.3.1 From fuel types to rates of spread

The equations of the mathematical model of Rothermel [1972] (RFM) are complex, with

many parameters to be calculated, but here I will explain only the main equation:

rs =
IRξ(1 + φw + φs)

ρbεQig
(2.15)

Where IR is the reaction intensity, that is, the energy release rate of the fire front. It

can be approximated as the rate of change of organic matter from solid to gas (as it is

burned). Therefore it depends on the amount of burnable materials, the heat content of

those materials, and a very important component: the moisture content of the fuel.

• ξ is the propagating flux ratio. It basically depends on the compactness of the fuel

bed, and on a parameter that quantifies the fuel particle size.

• φw and φs are the wind and slope coefficients, respectively.

• ρb is the fuel bulk density.

• ε is the effective heating number, which relates the size of the fuel particles with

the amount of heat required to ignite.

• And Qig is the heat of preignition, that is, the amount of energy required to burn

a certain material. It depends basically on the fuel moisture.

The notation I used is taken from RFM, as well as the definition of the parameters.

More details on the equations and how to apply them to real data can be found on his

work.

It is important to highlight some aspects of this equation. It has some components which

are intrinsic of the landscape and the fuel type, and others that depend on environmental

conditions:
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• IR and Qig depend heavily on moisture content, either in a direct or indirect way.

And φw depends only on wind speed. Therefore those parameters can be related

to re of the SOCFUS model.

• ξ, ρb and ε are dependent on different components of the fuel type, either the

compactness of the material, the particle size, the heat content... Those parameters

are then related to the ri component of the SOCFUS model.

Then, in order to obtain a parameter similar to ri from empirical data, I calculated the

rs, but keeping this parameter’s dependence on the environment constant. To do so,

I used the Standard fire behaviour fuel models developed by Scott and Burgan [2005].

They classify the possible fuels found in the ecosystems in 40 categories, and give the

parameters for each fuel required to use the RFM model (equation 2.15).

So, with available empirical data that used the same classification as Scott and Burgan

[2005], and using equation 2.15, I obtained a parameter, rs, comparable to the probability

of fire occurence, r, of the SOCFUS model.

Furthermore, I used the same environmental scenario and weather conditions for all fuel

types in order to see only the effect of the internal component of the fuels, hence to

approximate a ri (at least relative to the other fuels). To do this, I used the moisture

values according to the low scenario (D2L2) described in Scott and Burgan [2005], a

wind speed of 5 m/s and no slope. All the results given in this work will be based in

those conditions.

2.3.2 Acquisition and processing of the data

The data used were obtained from the Landscape Fire and Resource Management Plan-

ing Tools (LANDFIRE) (www.landfire.gov), developed by the USGS and other agencies

from the United States for their territory. There is a wide range of geospatial products

freely available related to terrestrial ecology and forest fires, among them, the 40 fire

behaviour models of Scott and Burgan [2005].

The area of study, as mentioned in section 2.3, is in central Alaska (figure 2.1). It is a

rectangular area delimited by the following coordinates:

The upper left corner (155.20 W, 63.55 N), and bottom right corner (64.53 N, 149.17

W). It has a size of 298.95 km x 117.84 km, which comprises an area of 35 228.3 km2.

http://landfire.cr.usgs.gov/NationalProductDescriptions2.php
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In the north, it is delimited by the Yukon and Tanana rivers, and in the south by the

Alaskan mountain range.

The area is almost completely covered by boreal forest, with few wetlands near the river

systems. On the southern limit, where the Alaskan mountain range begins, there are

areas with some alpine vegetation.

Figure 2.1: Map of the study area of Alaska (red rectangle). Also as polygons, the his-
torical fires recorded in that area. Map created by the Alaska Interagency Coordination

Center, and modified by the author.

The data was downloaded as a shape file, with a resolution of 30 m. Each pixel has a

value corresponding to a certain type of fuel. The shape file was exported to an ASCII

file using the software ArcGIS Desktop, obtaining a matrix of 9965x3928, with 39.14·106

values. The relationship between the fuel code and the fuel type is found in Scott and

Burgan [2005]: a number between 100 and 204, and if it is non burnable a pixel value of

9999. With this information, and the rs values obtained for each fuel type, a new matrix

is obtained where the values represent the rate of spread rs, with constant environmental

conditions as described in section 2.3.1.

This matrix then is used to calculate the multifractal spectrum of real ecosystems, using
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the central part where the forest is more continuous, without the presence of the rivers

in the north and the mountain range in the south. As in the model, the size of the

square matrix to calculate the multifractal spectrum is 2048x2048, so I could study four

different zones of the landscape.

2.4 The critical value of the SOCFUS model

As it is clear in equation 2.2, if the landscape is multifractal, each value of µ, i. e. a

certain amount of fuel, has a particular singularity exponent, α. And the frequency of

each α, if looked at different sizes ε, follows a power law, with an exponent f(α), which

defines the multifractal spectrum (eq. 2.3).

We can stablish then a relationship of a certain value of µ with a fractal dimension f(α).

Besides, Pueyo [2007] showed in his work that there is also a relationship between the

environmental conditions, re, and the distribution of the fire size, summarized as the

power law exponent, β. To compare it with the multifractal spectrum, the parameter

required is ri, which can be obtained from:

ri = rc − re (2.16)

Where rc is the critical value of r.

rc is the critical point where percolating fires happen. That is an infinite fire that would

never cease if the lattice was infinitely large. To understand it better, imagine a fire

that starts at one side of the lattice, and has to reach the other side. For this to happen,

it is necessary that all the lattice is covered by a certain amount of cells with a large

probability to spread the fire. The critical value will be the mean value of all cells of the

lattice. In a simple percolating model it corresponds to rc = 0.5. Pueyo [2007] estimated

rc ≈ 0.53 for the SOCFUS model, very close to the theoretical value. To check if this

threshold is useful to identify fire-prone clusters, I will calculate the histogram of all r

values of all cells burnt during a simulation with SOCFUS model.

It should reveal the value of r that was burnt more often, possibly rc.
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Results

3.1 Multifractal structure of the forest

Here I present the results that show the multifractal structure of the forest. The first

part will deal with the theoretical landscape originated by the SOCFUS model and then

I will present the results for the empirical data.

3.1.1 Multifractal structure of the landscape emerged from the SOC-

FUS model

Following the method of moments, described in section 2.1.1, I obtained the relationship

between the mass-partition function of µ, χq(ε), and the size of the box, ε, for −10 ≤

q ≤ +10. This range of q is sufficient, as it will be clear in figure 3.2. The resolution for

the values of q is 0.01, so I did this calculation for 2000 different values of q. However,

in figure 3.1 I represent only 20 values for a better visualization.

In figure 3.1 it is possible to see that for large, negative values of q the slope is not linear

when ε is small. That means that small µ values do not show scale invariance when we

look the lattice with high resolution. Therefore, for negative values of q I estimated the

slope only for ε ≥ 16.

22
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Figure 3.1: Log-log plot of χq(ε) vs ε, for −10 ≤ q ≤ +10. Note that for large,
negative values of q the slope is not linear.

The slope of χq(ε) versus ε is τ(q), for each value of q (equation 2.9). The regression

coefficients, R, obtained by least-squares regression were:

for −10 ≤ q < 0 R ≤ −0.99963

for 0 ≤ q ≤ 10 R ≥ +0.99998

With the values of τ(q), I obtained the Hölder exponent, α, and f(α) using the Legendre

transform (equation 2.10).

The details of the operations are explained in section 2.1.1.
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Figure 3.2: Plot of the Hölder exponents, α versus q.

In figure 3.2, I show the different values of α depending on q, which are related to

different values of µ. Therefore, small values of q, which are caused by small values of

µ, have large values of α.

And the opposite: cells with a high value of µ (detected with a high q) are related to

small α.

Also, it is clear that for large absolute values of q (either positive or negative) the values

of α do not vary substantially. That is, most of the α are defined for the central values

of q. Therefore studying the range of −10 ≤ q ≤ +10 is more than enough to study this

lattice.

This is important as some studies suggest that high order moments may not be defined

[Arenas and Chorin, 2006], it will not be our case for positive values of µ, as they are

truncated at µ = 0.7/Tri , and all moments on that area will be defined. However, there

could be problems at the lower tail of the data, with negative values of q.
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To check if high-order moments are not defined, I considered the following: if the lower

tail follows a power law, and according to equation 2.11, the moments of order q will be

finite if q > −β − 1, and in the other case, the moments will be undefined (〈Xq〉 → ∞).

I estimated β from the histogram shown in figure 3.3, β = 4.055. So this first survey

of our data suggests that problems may arise for moments of order q < −5, which cor-

responds just to the higher values of α. Therefore, affecting just a minor part of the

spectrum, and in no case the values of µ related with the fire risk (high values of (µ)).

Figure 3.3: Histogram of µ for the matrix of the simulated landscape, in logarithmic
scale. The slope of the histogram, β, is positive.
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Figure 3.4: The multifractal spectrum, α vs f(α). The colours represent different
values of q, the same colour either for positive or negative q. Note that q = 10 is not

shown as these values correspond to the same as q = 9.

And finally, as stated above, using the Legendre transform I obtained the multifractal

spectrum, α vs f(α). As expected, it has a convex shape, and the maximum value of f(α)

is 2, the Euclidean dimension of the system, which also coincides with the singularity

value of 2.

Also, the spectrum is clearly unbalanced to the right (larger values of α). This is

probably caused by a constraint of the model. As explained in section 1.2.2, the values

that ri can take are constrained to ri ∈ [0, r∞], where r∞ = 0.7. This causes that, as

the forest grows, the amount of fuel arrives to this threshold that cannot be trespassed,

and therefore many cells have this value.

Seen in terms of the multifractal formalism, lower values of α, which are caused by

larger values of µ, have a larger fractal dimension (≈ f(α)). That is, this measure is

more common in space. This is for α > 2, in the other side of the function smaller values

of α have lower f(α).
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Figure 3.5: Comparison of both methods to calculate the multifractal spectrum, the
method of moments and the cumulative probabilities method.

In figure 3.5 I show the multifractal spectrum calculated using the most common ap-

proach, the method of moments, and also using the method the cumulative distribu-

tion function of α [Mandelbrot, 1989]. The calculations were done according the equa-

tion 2.13.
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3.1.2 Multifractal structure of fuel types in boreal forests in Alaska

The same analysis was performed on the study zone of Alaska, but in this case four

areas were studied (figure 3.6, numbered from 1 to 4). Note that the zone is not ho-

mogeneous, as there are different geographical features (hills, mountains in the south,

rivers and lakes in the east) that condition the type and distribution of fuels.

Figure 3.6: Map of fuel types of the zone studied in Alaska, the four zones are marked
in red.

The diversity of the landscape has implications in the following results, as some parts

will show different multifractal patterns. Area 1, 2 and 3 are quite similar, while area

4 has a large amount of a specific type of fuel, related to river and wetlands. When I

calculated the power law that relates the partition function χq(ε) and the scale we are

using, ε, in the area 4 I found scale invariance only for a large size of the box (figure 3.7

b).
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Figure 3.7: Log-log plots of χq(ε) vs ε from the empirical data. a Corresponds to
area 1 of the zone studied, while b corresponds to zone 4. Note that b do not show a

scale invariance as clear as a.

In figure 3.7 I show the power laws for a portion of values of q. a is from area 1, while

b is from area 4.

The minimum correlation coefficient found, R, for each zone are:

Area 1 |R| ≥ 0.9999

Area 2 |R| ≥ 0.9998

Area 3 |R| ≥ 0.9993

Area 4 |R| ≥ 0.9908

The area 4, as it has a correlation coefficient much lower than the others, will not be

used for further comparison.
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Figure 3.8: The multifractal spectrum, α vs f(α), obtained from different zones of
the landscape in Alaska.

Clearly, the landscape from the boreal forest in Alaska is also multifractal. Furthermore,

it has as well a small unbalance to larger values of α, in a similar way as the multifractal

spectrum of the SOCFUS model, although not so strong.

It is important to highlight that, due to the poor quality of the power law of the area

4, the spectrum of this area is very different than the others. As stated above, I will

discard this area as it has some geographical features that make it less representative of

the boreal forest region.

3.2 Temporal evolution of the SOCFUS model

In figure 3.9, I show the temporal evolution of the model, summarized as 4 different

variables, the convexity of the multifractal spectrum τ ′′(1), where a smaller number

represents a narrow multifractal spectrum, and close to 0 a very broad one. The Shannon
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entropy, S, which if it is lower corresponds to a more diverse landscape; the correlation

dimension, Cd, where a higher value indicates a larger correlation between two points of

the lattice; and finally, the surface burned from the previous fire, BA. For the details of

the calculations see section 2.2.

If we consider either, S, τ ′′(1) or Cd as indicators of self organisation, is clear that until

a certain amount of fires has taken place the system is not diverse enough to maintain

a certain complexity. In this case, the amount of fires required is ≈ 2200 (figure 3.11).

After that, the system shows multifractal patterns.

However, the shape of the multifractal spectrum, τ ′′(1), varies over time in a wide range

(figure 3.9), showing some clear oscillations at the beginning, but never reaching a steady

state. The mean value was τ ′′(1) = −0.0216.
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Figure 3.9: Temporal evolution of the SOCFUS model, as the multifractality index
τ ′′(1), the Shannon entropy, S, the correlation dimension, Cd and the surface burned
from the previous fire, BAf (In this latter plot, the first two large fires are truncated;

the surface burned was about 9·106, twice the size of the axis).
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The same patterns are visible in the other variables, S and Cd. This is clear if we

calculate the Pearson correlation, Rx,y, between those time series:

Rτ ′′(1),Cd
= −0.9317

Rτ ′′(1),S = 0.9899

RCd,S = −0.8741

Hence, all of those variables are clearly correlated to each other. To show it in more

detail, figure 3.10 shows the relationship between τ ′′(1) and S.

It is clear that the entropy decreases when the system has a multifractal spectrum more

convex. But the system tends to go to states with higher entropy, which corresponds to

larger heterogeneity of the landscape, precisely where is more resistant to large fires. It

is important to note that τ ′′(1) measures the convexity of the multifractal spectrum, so

when it is very convex, the range of α present in the system is shorter than if τ ′′(1) is

close to 0. So the system tends to go to a state with more variety of α.
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Figure 3.10: Relationship between τ ′′(1) and S.
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In order to trace the origin of the self-organisation of the system, I calculated the mul-

tifractal spectrum at different moments, close to the critical instant where the first

important fire occurs (≈ 2200).

●●●●●●●●●●●●●●●●●●●●

●

1.8 2.0 2.2 2.4 2.6

0.
5

1.
0

1.
5

2.
0

t=100

α

f(α
)

●
●

●
●

●

●

●

●

●

●
●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

1.8 2.0 2.2 2.4 2.6

0.
5

1.
0

1.
5

2.
0

t=2250

α

f(α
)

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●

1.8 2.0 2.2 2.4 2.6

0.
5

1.
0

1.
5

2.
0

t=2350

α

f(α
)

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●

1.8 2.0 2.2 2.4 2.6

0.
5

1.
0

1.
5

2.
0

t=2450

α

f(α
)

●
●

●
●

●
●

●
●●

●●
●●●●●●●●●●●●

●
●

●
●●●●●●●●●●●●●●

1.8 2.0 2.2 2.4 2.6

0.
5

1.
0

1.
5

2.
0

t=2550

α

f(α
)

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●●●●●●●●●
●

●
●

●
●

●
●

●●●●●●●●●

1.8 2.0 2.2 2.4 2.6

0.
5

1.
0

1.
5

2.
0

t=2650

α

f(α
)

●●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●●●●●●●●●●
●

●
●

●
●

●
●

●
●

●●●●●

1.8 2.0 2.2 2.4 2.6

0.
5

1.
0

1.
5

2.
0

t=2850

α

f(α
)

●
●

●
●

●
●

●
●

●

●

●

●

●

●
●

●●●●●●●●●●●
●

●
●

●
●

●
●

●
●

●
●●●●

1.8 2.0 2.2 2.4 2.6

0.
5

1.
0

1.
5

2.
0

t=2950

α

f(α
)

Figure 3.11: The emergence of multifractality: the multifractal spectrum calculated
at different time steps.
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3.3 From the multifractal spectrum to the power law ex-

ponents

3.3.1 The critical value of the SOCFUS model

The critical value of the SOCFUS model corresponds to rc ≈ 0.5, for the whole system.

Specific patches should also burn more easily when their local r cross the critical thresh-

old. In order to see if this is the case I calculated the histogram of all r values of all

cells burnt during a simulation with SOCFUS model (figure 3.12).

There should be visible the value of r that was burnt more often, probably, the critical

value of the SOCFUS model.
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Figure 3.12: Histogram of r, for all cells that burnt during a simulation of the SOC-
FUS model. The red, dotted line marks the value r = 0.5.

In figure 3.12, it is clear that the most frequent value is ≈ 0.5. There is as well an

anomalous accumulation at 0.8, but this is due to the restriction of the model that the
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maximum value of ri is 0.7, so this is over-represented than in the natural dynamic.

Hence, the critical value of the model is also the value burnt more often, rc = 0.5.

3.3.2 Exponents of the power laws and the decomposition of the mul-

tifractal spectrum

Pueyo [2007] found an interesting relationship between the exponent of the power law,

β, and re ( figure 1.2).

Furthermore, I found that this relationship can be explained by a second order polyno-

mial function (R2 = 0.9989), the equation is shown in figure 3.13.
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Figure 3.13: Relationship between re and β.

With this data, we can use equation 2.16 with rc = 0.5, to find ri for a certain β.

And now, using equation 2.1, we get a value of µ, which can be expressed as a Hölder

exponent α, with equation 2.12.
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Table 3.1: Equivalence between different parameters.

β re ri µ α

1.742 -0.185 0.685 5.94·10−7 1.880
1.646 -0.155 0.655 5.68·10−7 1.886
1.540 -0.125 0.625 5.42·10−7 1.892
1.446 -0.095 0.595 5.16·10−7 1.899
1.390 -0.065 0.565 4.90·10−7 1.906
1.319 -0.035 0.535 4.64·10−7 1.913
1.285 -0.005 0.505 4.38·10−7 1.920
1.247 0.025 0.475 4.12·10−7 1.928
1.225 0.055 0.445 3.86·10−7 1.937
1.205 0.085 0.415 3.60·10−7 1.946

The next step, to obtain f(α) from α, is straightforward with the multifractal spectrum

from figure 3.4.
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Another interesting relationship I found is between the environmental conditions, re,

and the multifractal spectrum, f(α).

The implications of all those results are important, and will be discussed on the next

chapter.
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Chapter 4

Discussion

4.1 Multifractal patterns in ecosystems

4.1.1 Multifractality of the landscape of self-organised ecosystems

In the previous chapter, I showed that some terrestrial ecosystems such as forests, under

a fire regime which is intrinsic to many biomes, are self-organised, showing clear mul-

tifractal patterns. This was shown for a a simple model that reproduces fire dynamics

in a lattice, but more interestingly, empirical data from a large area of central Alaska

display similar patterns.

Multifractal structures in the landscape of terrestrial ecosystems were already observed:

in forest gaps in rain forests [Solé and Manrubia, 1995], in canopy height in a longleaf

pine savanna [Drake and Weishampel, 2001], land use in China [Wang et al., 2010], di-

versity of plant species in subtropical forests [Wei et al., 2013], but this study is the first

to show a clear relationship with fire. An interesting study related with SOC and forest

fire was done by Sinha-Ray et al. [2001], with another variant of the FF model, although

the multifractal analysis performed was only for the distance between trees, something

completely unrelated with the fire. Therefore our point of view is quite different and

approaches the mechanism of the model directly. However, it is suggestive that the

shape of the multifractal spectrum obtained by Sinha-Ray et al. [2001] is similar to this

study, supporting that universal properties are present in the model.

38
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Also, in figure 3.5 I compare the method that is more widely used to calculate the

multifractal spectrum, the method of moments, and the approach of multifractals as a

cumulative distribution function of α [Mandelbrot, 1989]. We should not forget that, as

many mathematical definitions, the computation of the multifractal spectrum through

the method of moments is just an approximation, which sometimes dilutes the meaning

of the measure. This is the reason I calculated it using the cumulative probabilities

method, as it is the approach that comes closer to the concept of multifractality.

Mandelbrot [1989] already stated that this method has strong limitations to calculate the

multifractal spectrum, but it is useful to support the method of moments and specially,

the interpretation of the multifractal spectrum as a the probability distribution of α.
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Figure 4.1: The multifractal spectrum, α vs f(α), obtained from different zones of
the landscape in Alaska.

In figure 4.1, I compare the multifractal spectrum from three areas of Alaska and the

spectrum obtained from the landscape originated in the SOCFUS model. There are

some differences in the results from empirical data, specially for larger values of α, but

is important to note that as shown in section 3.1.1, large values of α, which are related
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to low values of µ show a poorer scale invariance, so some variability is normal, specially

from empirical data. Of course, our hypotheses were qualitative and a quantitative

correspondence was not our expectation. So it is important to highlight that the shapes

are very similar.

It is very interesting, though, that for small values of α all the spectrums show a similar

pattern; this is important as this part of the spectrum is related with high values of µ,

and is the area more vulnerable to fire.

To really understand the multifractal spectrum, we may think about f(α) as the fractal

dimension of a given α, which is related to a certain amount of fuel.

A large f(α) means a higher fractal dimension of that α, that means that the µ related

to that α covers relatively well the space. In our example, the landscape from the

SOCFUS model and the Area 1 from Alaska are very similar: their fuels with larger µ

are distributed in similar patterns. On the other hand, Area 2 and 3 from Alaska have

lower values, i. e. the distribution of areas with high fuel is less common.

This approach can be interesting to apply when studying the landscape, specially for

fire management.

4.1.2 Multifractality of a SOC system over time

In figure 3.11 I show the instants immediately after the multifractal spectrum is detected

(t=2250).

Until then, all fractal dimensions are collapsed to a single value, 2. After the critical

instant, the part of the function with α > 2 starts to develop and present scale invariance;

this is the area related with small values of µ.

And then, around t=2450, the other side of the function with α < 2, starts to unfold

and become self similar at different scales, and importantly, with varying intensities for

different values of µ (multifractality). This delay happens because the system needs

extra time to have a certain amount of cells with large values µ, in order to have cells

with small α.

After that, the multifractal spectrum shows some oscillations to both sides. In fact, the

spectrum shows differences at any different times where it is calculated. This is clear if

we look at the measure τ ′′(1) in the figure 3.9. Therefore, as the system is dynamic, so

is the multifractal spectrum that defines it.
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One interesting study about the evolution of a multifractal system over time was done

by Saravia et al. [2012a,b]. They studied the ecological succession in periphyton com-

munities, and although the systems and mechanisms that drives them are very different,

there is a common feature regarding multifractality: There is a sudden increase of mul-

tifractality at the beginning (a wider multifractal spectrum), and then variations at a

lower level, which I also observed (figure 3.9), [Saravia et al., 2012a].

4.2 Environmental conditions decompose the multifractal

spectrum

Pueyo [2007] found that different environmental conditions, either on a model that

simulates forest fires or real boreal forests, are related to different power laws of the fire

size distribution. This relationship is shown in fig 1.2, where re is the environmental

conditions in the model and FWI is proxy to that parameter in empirical data. The

power law is characterized by the exponent β.

This has important implications, as it supports that boreal forests are self-organised

due to forest fires. But more importantly, shows that SOC systems are susceptible to

external forcings, being expressed as different power laws. Also, from a practical point

of view, he related a fact that was already known (warmer, drier conditions make large

fires more probable), with a mathematical expression that explains it, and allows to

know the probability of fire sizes under a certain weather.

His analyses were developed in one dimension, the time series of forest fires sizes. This

thesis is one step forward of Pueyo [2007], gathering the three dimensions that com-

pose the model and the reality. As the starting point is that forests are self-organised,

showing scale invariance, the obvious direction to approach this issue is to use fractal

and multifractal tools. As shown in the previous section, the forest is arranged in a

multifractal structure, where different probabilities of fire are present, and each of them

distributed in a unique pattern, a fractal dimension f(α). Those probabilities can be

expressed as Hölder exponents (equation 2.2), therefore a certain probability of fire r, is

related to a f(α).

So merging both ideas, we see that different power laws are related to different f(α).

This means that given some environmental conditions, which causes a certain fire size
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distribution with the parameter β, act on certain f(α) (figure 3.14). So each fractal

dimension is susceptible to different external conditions.

To sum up, the environment decomposes the multifractal spectrum of the forest.

The natural world is formed by a large variety of fractal shapes and structures, and

until now the fractal geometry and multifractal formalism have proven very useful to

describe it. Here I show that they are not only passive descriptors, but they play an

important role in ecosystems, being the transmission chain between external forcings

and the internal, self-organising processes of the systems.

4.2.1 Implications for climate change: the megafire

There is also an interesting relationship between different values of environmental con-

ditions, re, with the fractal dimension, f(α) (figure 3.15). It is clear that as re decreases,

the set of α affected by fire corresponds to a lower f(α), and this means that these values

are less present in the lattice than other with higher f(α).

But the important aspect of this relationship is that there is a certain value of re that

affects the zones corresponding to a f(α) = 2, which is the maximum value that the

multifractal spectrum can take, and corresponds to the Euclidean dimension of the land-

scape. The consequences of this is that when re ≈ 2.7, the layer susceptible to the fire is

the whole lattice (f(α) = 2), and a percolating fire is feasible with those conditions. In

the context of climate change as the weather becomes more severe (in the model means

that re increases gradually) this megafire becomes more likely.

This supposition is only according to the model, but there are three facts that make it

feasible in the reality:

1. The relationship between the environmental conditions and β is similar in empirical

data and the model [Pueyo, 2007].

2. The multifractal patterns found in the real forests are comparable to the landscape

emerged from the model (figure 4.1).

3. There are evidences that boreal forests in Alaska are now crossing a major thresh-

old [Mann et al., 2012], where vast areas of forests that before were not affected
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by fire, are now becoming vulnerable. They also observed a decrease of β over the

last 20 years, with more large fires.

Then, with those evidences, I hypothesize that in the coming years there will be certain

environmental conditions that will trigger a megafire in boreal forests, such as the ones

found in Alaska. Those large fires will cause an abrupt shift in the ecosystem, and after

that it will self-organise into a new state.

This hypothesis is plausible, as phase shifts are already observed in many ecosystems,

going rapidly from a certain state of the system to another [Scheffer et al., 2001] due

to a loss of resilience. Here I suggest that the resilience, in some systems, is related to

the multifractal patterns that compose the system, and when the environmental forcing

changes fast enough and reaches the maximum f(α) a phase shift happens. This change

should be fast enough, as if it is gradual the system may be able to shift to a more stable

state.

4.2.2 Insights for forest management

The characterisation of the landscape using the multifractal formalism is also useful for

forest management, specially related with forest fire. I cannot go deep enough as it is

beyond the scope of this thesis, but there are some ideas that may be useful for this

research field.

Studying the landscape through multifractal tools allows us to capture the inherent com-

plexities of ecosystems, revealing some essential components, and embracing all scales:

from a single tree to a regional scale. In principle would be possible, given certain envi-

ronmental conditions, to know which type of fuel and which areas are more susceptible

to the fire.

Also, knowing the distribution and sizes of patches with a given type of fuel, would be

possible to intervene on the structure of the landscape to manage fire regimes.

It is also feasible to represent the landscape as the Hölder exponents, α, instead of the

fuel map, and if we consider the fire as a turbulent diffusive process, some multifractal

tools can reveal hidden details beneath the forest. For example, a recent study on the

multifractal signature of sea surface temperature was used to reconstruct the global sea

currents, a turbulent process, with a very high resolution [Turiel et al., 2009]. I suggest
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that a similar approach can be applied to forest fires, but instead of currents, predicting

the evolution of a fire on a given landscape of singularities.



Chapter 5

Conclusions

In this thesis, I show that one system that is self-organised, in this case a landscape

under a forest fire regime, is arranged in multifractal patterns. This is shown not only

for a simple model that simulates forest fires [Pueyo, 2007], but also for empirical data

of boreal forests in Alaska. This is important to understand self-organisation processes

and specially the ones that happen in the natural world.

I also studied the temporal evolution of the system, showing an important correlation

between different variables that represent it. Some self-organized systems show fractal

structures not only spatially but also temporally [Solé et al., 2001]. I did not do the

calculations, but the power law of fire sizes found by Pueyo [2007] suggests that the

system may be multifractal in the three dimensions studied.

Moreover, I show that the environmental conditions that are present in the SOCFUS

model, which cause different power laws of fire sizes, are closely related to the multifractal

structure of the forest. This implies that multifractal patterns on ecosystems are not

just a way to describe them, but an important component in the relationship of the

ecosystems with the environment.

I also hypothesize that, as the multifractal spectrum makes the system sensitive to the

environmental conditions, if the perturbation is large enough to reach f(α) = 2, which

corresponds to the Euclidean dimension, an infinite, percolating fire is feasible, causing

an abrupt shift in the system. This must be taken into account in a context of climate

change, as there are already signs in Alaska that the ecosystem is stressed, near the

threshold [Mann et al., 2012].

45



Chapter 5. Conclusions 46

The multifractal formalism is poorly understood when used by ecologists or biologists,

but may have large implications to understand the world and provide information of

several key features, such as the arrangement of features in the space, their interaction

with the environment, and the storage of information. The work developed on turbulent

flows from a multifractal point of view [Turiel et al., 2009], must be taken into account

to many diffusive processes in ecology.
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